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Abstract
In this paper, we develop a formalism describing in a relativistic way a system
which consists of a classical and a quantum part which are coupled. The
formalism models one particle with spin 1

2 and it is a possible relativistic
extension of the event-enhanced quantum theory. We postulate a covariant
algorithm which plays the role of the standard reduction postulate in non-
relativistic quantum mechanics. Furthermore, we present an algorithm to
simulate detections of the particle.

PACS numbers: 03.65.Pm, 03.65.Ta, 03.65.−w

1. Introduction

Seeking to bridge the conceptual frameworks of classical and quantum theory, Blanchard and
Jadczyk [1–3] have proposed an extension of standard (non-relativistic) quantum mechanics
called event-enhanced quantum theory (EEQT). Its main idea is to view the total system
as consisting of a classical and a quantum part which are coupled. The pure states of the
quantum part are wavefunctions which are not directly observable, whereas the pure states of
the classical part can be observed without disturbing them. Changes of the classical pure states
are called events. Events are discrete and irreversible. A review on applications of EEQT is,
for example, [4].

Trying to define states and a reduction postulate in a relativistic theory can lead to
paradoxes and logical difficulties (for example, see Aharonov and Albert [5]).

One possible solution is the assumption that there exists a preferred reference frame.
For example, Caban and Rembieliński [6] used a non-standard synchronization scheme with
built-in preferred reference frame and proposed a Poincaré-covariant relativistic quantum
mechanics.

Furthermore, one possibility to avoid some of the above difficulties is to consider the
wavefunction for a relativistic particle not as a function on the spacetime continuum but as a
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function on the set of flat, space-like hypersurfaces in Minkowski space (for example, see the
papers by Breuer and Petruccione [7–11]).

Another possibility is the introduction of a supplementary, intrinsic time, the proper time τ .
The proper time τ is independent of the reference frame. It plays the role of (absolute) time
in non-relativistic quantum mechanics. The wavefunction at a given proper time is a function
on the spacetime continuum. The idea of a proper time was first used physically by Horwitz
and Piron [12] and later in a lot of other approaches (a review with more references is, for
example, written by Fanchi [13]).

Blanchard and Jadczyk have also introduced a relativistic version of EEQT [14] using the
idea of a proper time and an indefinite scalar product.

The main aim of this paper is to present an alternative relativistic version of EEQT which
uses a positive-definite scalar product. The theory will describe a single spin- 1

2 particle with
mass m in a relativistic way and should be useful in situations in which one can neglect pair-
creation and pair-annihilation. As in the relativistic extension introduced by Blanchard and
Jadczyk [14], we postulate an additional parameter, called proper time τ . The total system
consists of a classical and a quantum part. Therefore, at a given proper time τ , the (pure) state
of the total system is a pair (ωτ ,�τ ). ωτ is the state of the classical part and �τ is the state of
the quantum part.

We assume that a (pure) stateωτ of the classical part is a number: ωτ ∈ N0 = {0, 1, 2, . . .}.
Again, a change of the classical (pure) state is called an ‘event’.

The (pure) states of the quantum part shall be (heuristically speaking) solutions � :
R×R

3 → C
4 of the Dirac equation

(
iγ µ∂µ− e

ch̄
γ µAµ− mc

h̄

)
�(x) = 0. The quantum state is

always a function on the spacetime continuum, even if ideal or continuous measurements are
performed. An interesting property of a quantum state is that it is uniquely given by its values
on a space-like hyperplane. Moreover, it will be possible to introduce a positive-definite scalar
product between two quantum states. In section 2, we present the definition of (pure) states
of the quantum part and their properties in a more mathematical way.

We define in section 3 how the system state changes if we change the reference frame or
‘charge conjugate’ the system.

In section 4, we postulate a covariant algorithm for simulating ideal measurements of
infinitesimally small duration. It plays the role of the standard reduction postulate in non-
relativistic quantum mechanics.

An algorithm for simulating detections of the particle is presented and examined in
section 5.

In the last section, we summarize the properties of our formalism.
In a future paper, we will examine applications of our algorithm for simulating detections.

A first application can be found in [15].

2. Pure states of the quantum part

We want to define a (pure) state of the quantum part of the total system. It describes the state
of a single particle with spin 1

2 and mass m.
Let P = {(y, �α, �ϕ) : y ∈ R

4, �α ∈ R
3, |�α| < 1, �ϕ ∈ R

3, |�ϕ| < π} and we define with
λ ≡ ((y0, �y), �α, �ϕ) ∈ P:

σλ(�u) = (y0 + �α · R̂�ϕ �u, �y + R̂ �ϕ �u) ∀�u ∈ R
3

〈f |g〉λ =
∫

d�uf +(�u)(1− γ 0 �γ �α)g(�u) ∀f, g ∈ L2(R
3)4

‖f ‖λ =
√
〈f |f 〉λ ∀f ∈ L2(R

3)4
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with C̄ = C ∪ {±∞ + iR} ∪ {R ± i∞} ∪ {±∞ ± i∞} and L2(R
3)4 = {f : R

3 →
C̄4 :

∫
dx|f (x)|2 < ∞}. γ µ = (γ 0, �γ ) are the Dirac matrices and R̂�ϕ ∈ SO(3) is the

rotation of the angle |�ϕ| around the vector �ϕ/|�ϕ| (the sense of rotation is determined by
the right-hand rule). Note that this scalar product was also used by Breuer and Petruccione
[7–11].

We continue with the following definition.

Definition. � ∈ Ĥ if and only if the following conditions are satisfied

(i) � : R× R
3 → C

4 � continuous differentiable (1)

(ii)
(
iγ µ∂µ − e

ch̄
γ µAµ − mc

h̄

)
�(x) = 0 (2)

(iii) ‖� ◦ σλ‖λ <∞ for all λ ∈ P (3)

(iv) lim|�u|→∞ |�u|3|� ◦ σλ(�u)|2 = 0 for all λ ∈ P (4)

Aµ : R
4 → R

4 is the external electromagnetic potential.

Ĥ is a vector space. Now we want to define a scalar product for all� ∈ Ĥ. The following
theorem is very important for achieving this task.

Theorem 1. Let �A,�B ∈ Ĥ, let jµAB := �+
Aγ

0γ µ�B , the quantity

〈�A ◦ σλ|�B ◦ σλ〉λ ≡
∫
σλ

j
µ

AB dfµ

exists for all λ = ((y0, �y), �α, �ϕ) ∈ P and is independent of λ. dfµ ≡ (1,−�α) d�u denotes the
differential ‘surface element’ of σλ.

Proof.

(i) Existence. This follows from the fact that �A ◦ σλ,�B ◦ σλ ∈ L2(R
3)4 (see (3)).

(ii) Independence. We get ∂µj
µ

AB = 0 by a simple calculation. The integral is clearly
independent of �ϕ and �y. Therefore, we can assume �ϕ = 0 and �y = 0. Let σ1 = σ((y0

1 ,
�0),�α1,0)

and σ2= σ((y0
2 ,
�0),�α2,0) be two hyperplanes. Let x̂(ϕ,�)= (cosϕ sin�, sinϕ sin�, cos�).

(a) Case �α1 = �α2 =: �α. Let

F1(R) = {σ1(�u) : |�u| � R}
F2(R) = {σ2(�u) : |�u| � R}
sR(ν, ϕ,�) =

(
y0

1 + ν
(
y0

2 − y0
1

)
+ R · �αx̂(ϕ,�),R · x̂(ϕ,�))

S(R) = {sR(ν, ϕ,�) : 0 � ν � 1, 0 � ϕ < 2π, 0 � � < π}.
Let V (R) be the volume bounded by F1(R), F2(R) and S(R). The differential ‘surface
element’ of S(R) is dSµ = R2Wµ(ν, ϕ, α) dν dϕ d�. The function Wµ need not be
explicitly calculated, because it is enough to know thatWµ does not depend on R. We get
by the Gauss theorem

(
with jµAB(R, ν, ϕ,�) ≡ jµAB ◦ sR(ν, ϕ,�)

)
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−
∫
σ1

j
µ

AB dfµ +
∫
σ2

j
µ

AB dfµ = − lim
R→∞

∫
F1(R)

j
µ

AB dfµ + lim
R→∞

∫
F2(R)

j
µ

AB dfµ

= lim
R→∞

∫
V (R)

∂µj
µ

AB d4x − lim
R→∞

∫
S(R)

j
µ

AB dSµ

= − lim
R→∞

∫
S(R)

j
µ

AB dSµ

= − lim
R→∞

∫
dν
∫

dϕ
∫

d�R2j
µ

AB(R, ν, ϕ,�)Wµ(ν, ϕ, α)

= −
∫

dν
∫

dϕ
∫

d� lim
R→∞

(
R2j

µ

AB(R, ν, ϕ,�)
)
Wµ(ν, ϕ, α) = 0

because

R2
∣∣jµAB(R, ν, ϕ,�)∣∣ = R2

∣∣�+
Aγ

0γ µ�B ◦ sR(ν, ϕ,�)
∣∣

� const

2
(R2|�A ◦ sR(ν, ϕ,�)|2 + R2|�B ◦ sR(ν, ϕ,�)|2) R→∞−→ 0

uniformly in ϕ,� (see (4)) and ν (because jµAB is continuous).

(b) Case �α1 �= �α2. Because of case (a), we can assume y0
1 = y0

2 = 0. Let �α(ν) be chosen in
such a way that �α(ν) is continuous, �α(0) = �α1, �α(1) = �α2 and |�α(ν)| < 1 ∀ν ∈ [0, 1].
Let

F1(R) = {σ1(�u) : |�u| � R}
F2(R) = {σ2(�u) : |�u| � R}
sR(ν, ϕ,�) = (R · �α(ν)x̂(ϕ,�),R · x̂(ϕ,�))
S(R) = {sR(ν, ϕ,�) : 0 � ν � 1, 0 � ϕ < 2π, 0 � � < π}.

Again, V (R) should be the volume bounded by F1(R), F2(R) and S(R). The differential
‘surface element’ of S(R) is dSµ = R3W̃µ(ν, ϕ, α) dν dϕ d� (note the factor R3 instead
of R2 in case (a)!). Analogous to case (a), it follows

−
∫
σ1

j
µ

AB dfµ +
∫
σ2

j
µ

AB dfµ = 0

because
∣∣R3j

µ

AB(R, ν, ϕ,�)
∣∣ R→∞−→ 0 uniformly in ν, ϕ,�. �

Now we are able to introduce a scalar product between elements of Ĥ.

Definition. We introduce a scalar product between �A,�B ∈ Ĥ:

〈�A|�B〉Ĥ := 〈�A ◦ σλ|�B ◦ σλ〉λ ‖�A‖Ĥ := √〈�A|�A〉Ĥ
with λ ∈ P arbitrary.

〈·|·〉Ĥ is a sesquilinear form. It is clear that 〈�|�〉Ĥ � 0 ∀� ∈ Ĥ because the eigenvalues
of (1− γ 0 �γ �α) are 1 + |�α| > 0 and 1− |�α| > 0.

The independence of the scalar product from the parameters λ ≡ (y, �α, �ϕ) ‘expresses’
the independence of the reference frame. Note that the number of ‘free parameters’ is ten and
equals the number of parameters of a Poincaré transformation.

An element � ∈ Ĥ is uniquely given by its values on a hyperplane σλ. This fact results
indeed from the following theorem.
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Theorem 2. Let µ = (y, �α, �ϕ) ∈ P arbitrary, let �1,�2 ∈ Ĥ with �1 ◦ σµ = �2 ◦ σµ then it
follows �1 = �2.

Proof. Let � := �1 − �2, we get � ◦ σµ(�u) = 0 ∀�u and therefore ‖� ◦ σµ‖µ = 0. We
assume �1 �= �2, so there exists z = (z0, �z) ∈ R

4 with �(z) = �1(z)−�2(z) �= 0. Because
� is continuous there must be a neighbourhood of z with �(x) �= 0. So there exists ε > 0
with � ◦ σ(z,�α,�ϕ)(�u) �= 0 for all �u with |�u| < ε (because z = σ(z,�α,�ϕ)(0)). It follows that
‖� ◦ σ(z,�α,�ϕ)‖σ(z,�α,�ϕ) > 0. But we get

0 = ‖� ◦ σ(y,�α,�ϕ)‖σ(y,�α,�ϕ) theorem 1= ‖� ◦ σ(z,�α,�ϕ)‖σ(z,�α,�ϕ) �= 0.

The assumption that �1 �= �2 is wrong and it implies that �1 = �2. �

Theorem 3. (Ĥ, 〈·|·〉Ĥ) is a pre-Hilbert space.

Proof. It is only left to prove that 〈�|�〉Ĥ = 0 provides� = 0. We assume

0 = 〈�(0)|�(0)〉Ĥ =
∫

d�u |�(0, �u)|2 = 〈�|�〉L2(R
3)4 .

It results that �(0, �u) = 0 ∀�u, because 〈·|·〉L2(R
3)4 is a scalar product. As 0(0, �u) = 0 ∀�u and

�(0, �u) = 0 ∀�u, we get by theorem 2 that � = 0. �

We demand that the quantum states are elements of a Hilbert space. So we must complete
the pre-Hilbert space (Ĥ, 〈·|·〉Ĥ).

Definition. Let

H = {F : R
4 → C̄

4|F ◦ σλ ∈ L2(R
3)4 ∀λ ∈ P and ∃ sequence {�m}m∈N,�m ∈ Ĥ :

∀ε > 0 ∃Nε : ‖(F − �m) ◦ σλ‖λ < ε ∀m > Nε ∀λ ∈ P}. (5)

Let F ∈ H, we define F = 0⇔ ‖F ◦ σλ‖λ = 0 ∀λ ∈ P .
A scalar product 〈·|·〉H : H×H→ C is defined by

〈F1|F2〉H := 〈F1 ◦ σλ|F2 ◦ σλ〉λ ∀F1, F2 ∈ H
with λ ∈ P arbitrary.

The following theorem proves that (H, 〈·|·〉H) is really a Hilbert space and a completion
of (Ĥ, 〈·|·〉Ĥ).

Theorem 4. The above scalar product is well defined (independent of the parameter λ).
(H, 〈·|·〉H) is a Hilbert space and Ĥ is a dense subspace of it.

Proof. (i) We first prove that H is a vector space. The only thing which is (perhaps) not trivial
is the existence of a sequence in the above sense. Let F1, F2 ∈ H, a, b ∈ C, then there exist
sequences�1,m,�2,m in the above sense. Now we get

‖((aF1 + bF2)− (a�1,m + b�2,m)) ◦ σλ‖λ = ‖a(F1 −�1,m) ◦ σλ + b(F2 −�2,m) ◦ σλ‖λ
� |a|‖(F1 −�1,m) ◦ σλ‖λ + |b|‖(F2 − �2,m) ◦ σλ‖λ

m→∞−→ 0

uniformly for all λ ∈ P .
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(ii) We now prove that 〈F1 ◦ σλ|F2 ◦ σλ〉λ is independent of λ ∈ P for all F1, F2 ∈ H. Let
F1, F2 ∈ H, then there exist sequences �1,m,�2,m in the above sense. Now we get with
λ, λ̄ ∈ P
〈F1 ◦ σλ|F2 ◦ σλ〉λ = 〈lim−λm→∞(�1,m ◦ σλ)| lim−λm→∞(�2,m ◦ σλ)〉λ

= lim
m→∞〈�1,m ◦ σλ|�2,m ◦ σλ〉λ

theorem 1= lim
m→∞〈�1,m ◦ σλ̄|�2,m ◦ σλ̄〉λ̄

= 〈lim−λ̄m→∞(�1,m ◦ σλ̄)|lim−λ̄m→∞(�2,m ◦ σλ̄)〉λ̄
= 〈F1 ◦ σλ̄|F2 ◦ σλ̄〉λ̄.

lim−λ and lim−λ̄ mean the limits concerning the norms ‖·‖λ and ‖·‖λ̄ in the Hilbert spaces
(L2(R

3)4, 〈·|·〉λ) and (L2(R
3)4, 〈·|·〉λ̄) . It is now clear that 〈·|·〉H is a sesquilinear form with

〈F |F 〉H � 0 ∀F ∈ H.
(iii) Let F ∈ H with 〈F |F 〉H = 0, then it follows

〈F |F 〉H = 0
⇒ 〈F ◦ σλ|F ◦ σλ〉λ = 0 ∀λ ∈ P
⇒ ‖F ◦ σλ‖λ = 0 ∀λ ∈ P
(⇔ (F ◦ σλ)(�u) = 0 for almost all �u ∈ R

3, ∀λ ∈ P)
def.⇔ F = 0.

So 〈·|·〉H is a scalar product.
(iv) We now prove that H is complete. Let {Fm} be a Cauchy sequence in H, so
‖(Fm − Fn) ◦ σλ‖λ m,n→∞−→ 0 uniformly ∀λ ∈ P . So there exists a sub-sequence {Fnk } with∥∥(Fnk+1 − Fnk

) ◦ σλ∥∥λ � 2−k ∀k ∀λ ∈ P.
By using Lebesgue’s dominated convergence theorem with the sequence fλ,k := Fnk ◦ σλ, we
can show that there exists fλ ∈ L2(R

3)4 with∥∥Fnk ◦ σλ − fλ∥∥λ k→∞−→ 0 ∀λ ∈ P
and limk→∞ Fnk ◦ σλ(�u) = fλ(�u) almost everywhere and ∀λ ∈ P . Note that the sub-sequence

{nk}k∈N is independent of λ! We also get ‖Fn ◦ σλ − fλ‖λ n→∞−→ 0 ∀λ ∈ P . Because
‖(Fm − Fn) ◦ σλ‖λ m,n→∞−→ 0 uniformly ∀λ ∈ P , we get by taking lim−λm→∞ that
‖Fn ◦ σλ − fλ‖λ n→∞−→ 0 uniformly ∀λ ∈ P . Now we set

F(x) =
{
fλ(�u) if σλ(�u) = x and limk→∞ Fnk ◦ σλ(�u) = fλ(�u)
0 otherwise.

This function is well defined, because the sub-sequence Fnk is independent of λ! It is also
trivial that F ◦ σλ = fλ almost everywhere.

We now prove that F ∈ H. The only thing left to prove is the existence of a sequence
�m ∈ Ĥ. Because Fm ∈ H, there exist sequences {�m,v} with ‖(Fm −�m,v) ◦ σλ‖λ v→∞−→ 0
uniformly ∀λ ∈ P . So there exists �m ∈ Ĥ with ‖(Fm −�m) ◦ σλ‖λ < 1

m
∀λ ∈ P . Now we

get

‖(F − �m) ◦ σλ‖λ � ‖(F − Fm) ◦ σλ‖λ + ‖(Fm −�m) ◦ σλ‖λ
� ‖fλ − Fm ◦ σλ‖λ︸ ︷︷ ︸

m→∞−→ 0 uniformly ∀λ∈P

+
1

m

m→∞−→ 0

uniformly(!) for all λ ∈ P . So it results that F ∈ H.
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The last step to prove is: Fm
m→∞−→ 0 concerning the norm in H. We get for all λ ∈ P

‖(F − Fm) ◦ σλ‖λ = ‖fλ − Fm ◦ σλ‖λ m→∞−→ 0.

(v) It is trivial that Ĥ ⊂ H and that Ĥ is dense in H. �

We are now in a position to postulate that the (pure) states of the quantum part of the total
system are the elements of the Hilbert space (H, 〈·|·〉H). An important fact is that the elements
are still functions on the spacetime continuum.

Let λ ∈ P and we define the function Uλ : H→ Rλ by

Uλ : H � F(x) �−→ F ◦ σλ(�u) ∈ Rλ (6)

with Rλ ⊂ L2(R
3)4 denoting the range of Uλ. A quantum state is uniquely given by its values

on a hyperplane σλ. This means that the function Uλ is injective for all λ ∈ P . The following
theorem proves this property.

Theorem 5. Let F1, F2 ∈ H such that there exists µ ∈ P with F1 ◦ σµ = F2 ◦ σµ then it
follows F1 = F2.

Proof. Let F = F1 −F2, we get F ◦ σµ = 0. F ∈ H, so there exists a sequence�n ∈ Ĥ with

‖(F − �n) ◦ σλ‖λ n→∞−→ 0 uniformly for all λ ∈ P . We get

0
n→∞←− ‖(F −�n) ◦ σµ‖µ = ‖�n ◦ σµ‖µ theorem 1= ‖�n ◦ σλ‖λ ∀λ ∈ P.

Because

‖F ◦ σλ‖λ � ‖(F −�n) ◦ σλ‖λ + ‖�n ◦ σλ‖λ n→∞−→ 0 ∀λ ∈ P
we get ‖F ◦ σλ‖λ = 0 ∀λ ∈ P ⇔ F = 0.
It follows that 0 = F = F1 − F2 ⇒ F1 = F2. �

The function Uλ is invertible, let U−1
λ : Rλ → H be the inverse function. The following

theorem proves some properties of Uλ and U−1
λ respectively.

Theorem 6. Let λ ∈ P and the functions Uλ : H→ Rλ and U−1
λ : Rλ → H are defined as

above.

(i) Let F ∈ H and f ∈ Rλ, then
〈
U−1
λ f |F 〉H = 〈f |UλF 〉λ and especially ‖UλF‖λ = ‖F‖H

and
∥∥U−1

λ f
∥∥
H = ‖f ‖λ.

(ii) We use the Hilbert space (L2(R
3)4, 〈·|·〉λ). Then the set Rλ ⊂ L2(R

3)4 is closed.

Proof.

(i)
〈
U−1
λ f

∣∣F 〉H = 〈 (U−1
λ f

) ◦ σλ︸ ︷︷ ︸
f

∣∣F ◦ σλ︸ ︷︷ ︸
UλF

〉
λ
= 〈f |UλF 〉λ

(ii) Let fn ∈ Rλ for all n ∈ N and lim−λn→∞fn = f ∈ L2(R
3)4. We want to prove that

f ∈ Rλ. We set Fn := U−1
λ fn. {Fn}n∈N is a Cauchy sequence. Because H is complete, there

exists F ∈ H with limn→∞ Fn = F . Moreover we get

f = lim−λn→∞fn = lim−λn→∞UλFn = Uλ lim
n→∞Fn = UλF

(because Uλ is bounded/continuous). So Rλ is closed. �

It follows that (Rλ, 〈·|·〉λ) is a Hilbert space and Uλ : (H, 〈·|·〉H) → (Rλ, 〈·|·〉λ) is
a unitary operator for all λ ∈ P . Because (L2(R

3)4, 〈·|·〉λ) is a separable Hilbert space,
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(Rλ, 〈·|·〉λ) is a separable ‘sub’-Hilbert space. Therefore, (H, 〈·|·〉H) must be a separable
Hilbert space.

Before continuing, let us compare our approach with that of Breuer and Petruccione
[7–11]. They introduced the Hilbert bundle HBP (λ) ≡ (L2(R

3)4, 〈·|·〉λ) and a wavefunction
ψBP which depends on the hyperplane, ψBP (λ) ∈ HBP (λ). Theorem 6 gives the result that
H is isomorph to HBP (λ̄) for a fixed (but arbitrary) λ̄ ∈ P . Without measurements, the
wavefunction ψBP is more or less a function on the spacetime continuum, i.e. there exists a
function�(x) withψBP (λ) = � ◦ σλ. This function� is the quantum state in our formalism.
But this connection is not true in the case of measurements.

3. Change of the reference frame and charge conjugation

Our aim now is to define how the quantum state changes, if we change the reference frame
K → K̃ with x̃ = �x + a. The classical state does not change in this case.

We look only at Poincaré transformations (�, a) which do not mirror the space and do
not invert the direction of time, i.e., � ∈ L↑+ . Let S(�) be a non-singular 4 × 4 matrix with
S−1(�)γ µS(�) = �µ

νγ
ν, S−1(�) = S(�−1) and S−1(�) = γ 0S+(�)γ 0.

Let us first present a lemma which will be needed in the proofs of the main theorems.

Lemma. Let f, g : R
4 → C̄4, f ◦ σλ, g ◦ σλ ∈ L2(R

3)4 for all λ ∈ P,� ∈ L↑+, a ∈ R
4, we

set

f̃ (x̃) = S(�)f (�−1(x̃ − a)) g̃(x̃) = S(�)g(�−1(x̃ − a)).
Let λ ∈ P arbitrary, then there exists µ(λ) ∈ P with

〈f̃ ◦ σλ|g̃ ◦ σλ〉λ = 〈f ◦ σµ(λ)|g ◦ σµ(λ)〉µ(λ).

Proof. Each arbitrary Lorentz transformation � ∈ L↑+ can be expressed as a product of pure
translations, pure rotations and Lorentz-boosts in the x1 direction. So it is enough to prove the
lemma for pure translations, pure rotations and Lorentz-boosts in the x1 direction separately.
This can be done by straightforward calculations. �

The electromagnetic potential in the reference frame K̃ is given by

Ãµ(x̃) = (�−1)νµAν(�
−1(x̃ − a)).

So we define

˜̂H =
{
�̃ : R×R

3 → C
4

∣∣∣∣ �̃ cont. diff.,
(

iγ µ∂µ − e

ch̄
γ µÃµ − mc

h̄

)
�̃(x̃) = 0,

‖�̃ ◦ σλ‖λ <∞, lim
|�u|→∞

|�u|3|�̃ ◦ σλ(�u)|2 = 0 ∀λ ∈ P
}
. (7)

A scalar product 〈·|·〉 ˜̂H between two elements of ˜̂H and a completion (H̃, 〈·|·〉H̃) can be
constructed in the same way as in the previous section.

Let the quantum state in the reference frame K be � ∈ Ĥ. Then the quantum state in the
reference frame K̃ is defined to be

�̃(x̃) = S(�)�(�−1(x̃ − a)).
We get the following theorem.

Theorem 7. Let � ∈ Ĥ, then �̃(x̃) = S(�)�(�−1(x̃ − a)) ∈ ˜̂H.
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Proof. It is clear that �̃ is continuous differentiable and that �̃ is a solution of the Dirac
equation with external field Ãµ (see, e.g., [16]). The third condition in (7) is clear because
of the lemma. The last condition can be proved by simple calculations. Again, it is
enough to do this only for pure translations, pure rotations and Lorentz-boosts in the x1

direction separately. �

Now, we look at the general case F ∈ H. Let us define an operatorW(�,a) : H→ H̃:

(W(�,a)F )(x̃) := S(�)F(�−1(x̃ − a)) ∀F ∈ H.
This operator is well defined. Using these transformation rules, the scalar product is covariant.
Its value is the same in all reference frames. Or in other words, the operatorW(�,a) is unitary.
All these will be proved by the next theorem.

Theorem 8.

(i) Let F ∈ H, then F̃ (x̃) = (W(�,a)F )(x̃) ∈ H̃.
(ii) Let F1, F2 ∈ H, define F̃ 1 = W(�,a)F1, F̃ 2 = W(�,a)F2 then

〈F̃ 1|F̃ 2〉H̃ = 〈W(�,a)F1|W(�,a)F2〉H̃ = 〈F1|F2〉H.

Proof. (i) Because of the lemma, we get

‖F̃ ◦ σλ‖λ = ‖F ◦ σµ(λ)‖µ(λ) <∞
for all λ ∈ P .

Only the existence of the sequence �̃n ∈ ˜̂H is left to be proved. Since F ∈ H, there exists
a sequence �n ∈ Ĥ with ‖(F −�n) ◦ σλ‖λ n→∞−→ 0 uniformly for all λ ∈ P . Let �̃n(x̃) =
S(�)�n(�

−1(x̃ − a)). �̃n ∈ ˜̂H because of theorem 7. Since ‖(F −�n) ◦ σλ‖λ n→∞−→ 0
uniformly for all λ ∈ P , we also get

‖(F̃ − �̃n) ◦ σλ‖λ see lemma= ‖(F −�n) ◦ σµ(λ)‖µ(λ) n→∞−→ 0

uniformly for all λ ∈ P . We have indeed F̃ ∈ H̃.
(ii)

〈F̃ 1|F̃ 2〉H̃ = 〈F̃ 1 ◦ σλ|F̃ 2 ◦ σλ〉λ arbitrary λ ∈ P
see lemma= 〈F1 ◦ σµ(λ)|F2 ◦ σµ(λ)〉µ(λ)
= 〈F1|F2〉H. �

Now, we examine the situation if we charge conjugate the system K → KC . We define

ĤC =
{
�C : R× R

3 → C
4

∣∣∣∣�C cont. diff.,
(

iγ µ∂µ +
e

ch̄
γ µAµ − mc

h̄

)
�C(x) = 0,

‖�C ◦ σλ‖λ <∞, lim
|�u|→∞

|�u|3|�C ◦ σλ(�u)|2 = 0 ∀λ ∈ P
}
. (8)

Again a scalar product 〈·|·〉ĤC between two elements of ĤC
and a completion (HC, 〈·|·〉HC )

can be constructed in the same way as in the previous section.
It is well known that in any representation of the γ -matrices there must exist a matrix C

which satisfies

CγµT C−1 = −γ µ (9)
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(see, e.g., [16]). In addition, we want to use only representations of the γ -matrices for which
there exist an unitary matrix C satisfying (9). (This is true, e.g., in the Dirac representation
with C = iγ 2γ 0.)

The following theorem expresses the relation between the spaces H and HC . It can be
proved by straightforward calculations.

Theorem 9.

(i) Let � ∈ Ĥ, then �C = Cγ 0T �∗ ∈ ĤC
.

(ii) Let F ∈ H, then FC = Cγ 0T F ∗ ∈ HC .
(iii) Let FA, FB ∈ H, let FCA = Cγ 0T F ∗A, F

C
B = Cγ 0T F ∗B , then

〈
FCA

∣∣FCB 〉HC = 〈FB |FA〉H.

4. Events generating algorithm (ideal, infinitesimal short measurements)

In the previous sections, we have precisely defined the state of the total system and examined
some of its properties. We are now in a position to present the proper-time evolution of
the system state. More precisely, we will postulate algorithms which generate events, i.e.
irreversible changes of the classical state. Because we know that the set of quantum states is
indeed a Hilbert space, we can use the well-known formulation in the Hilbert space framework.
In this section, we formulate an algorithm to describe ideal measurements of infinitesimal
short duration. In principle, we rewrite the standard reduction postulate of the non-relativistic
quantum mechanics by replacing t with τ and using our Hilbert space of ‘solutions’. But
the quantum state should change only in the case of measurement, i.e. the ‘Hamiltonian’
is zero. Performing a measurement a reduction should happen. The reduction changes the
wavefunction on the whole spacetime (not, e.g., only along a hyperplane) in such a way that the
resulting wavefunction is again a (generalized) solution of the Dirac equation on the spacetime
continuum. In this way, we get a covariant algorithm playing the role of the standard reduction
postulate in non-relativistic quantum mechanics.

We name the reference frame K. Let the particle be prepared at proper time τ0 at a
spacetime point z0.

There should be n measurements, which happen at proper times τi at spacetime points
zi, i = 1, . . . , n. The ith measurement is represented by an observableMi with

Mi =
∑
j

λi,j |�i,j 〉〈�i,j |

�i,j ∈ H, 1 =∑j |�i,j 〉〈�i,j |, 〈�i,j |�i,k〉H = δj,k and λi,j ∈ R.
We assume that τ0 < τ1 < · · · < τn. We want to preserve a weak kind of order, so we

demand the following: no event (e.g., preparation, measurement or detection) can take place
in the backward light-cone of the previous event:(‖zj+1 − zj‖2 � 0 and z0

j < z0
j+1

)
or (‖zj+1 − zj‖2 < 0) ∀j = 0, 1, . . . , n− 1

with ‖x‖2 = ‖(x0, �x)‖2 = (x0)2 − |�x|2 being the Minkowski distance. Or in other words, let
two successive events happen at spacetime points zj =

(
z0
j , �zj

)
and zj+1 =

(
z0
j+1, �zj+1

)
, then

there must exist a Poincaré transformation (�, a)
(
� ∈ L↑+

)
such that

�0
µz

µ

j + a0 = z̃0
j

!
< z̃0

j+1 = �0
µz

µ

j+1 + a0.

There must exist a reference frame in which the time of the first event z̃0
j is earlier than the

time of the second event z̃0
j+1.

Now we start with the formulation of a relativistic reduction postulate for ideal
measurements. Let (ωτ ,�τ ) be the state of the total system.
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(i) The particle is prepared at proper time τ0 at spacetime point z0. The quantum state is
given by �τ0 with

∥∥�τ0

∥∥2
H = 1 and the classical state is ωτ0 = 0. Let i = 1.

(ii) The quantum and the classical states change only in the case of measurement. They have
no τ -dependence if there is no measurement:

(ωτ ,�τ ) =
(
ωτi−1 ,�τi−1

)
for τi−1 � τ � τi .

(iii) The ith measurement takes place at proper time τi at spacetime point zi . We choose the
measurement result λi,j with probability

p(λi,j ) =
∣∣〈�i,j

∣∣�τi 〉H∣∣2.
If λi,j is the received measurement result, the state of the total system changes in the
following way:(

ωτi ,�τi
) −→ (j,�i,j ).

(iv) Let i → i + 1 and go to step (ii).

We want to examine what this algorithm looks like in another reference frame. Let K̃ be
a reference frame which is connected to K by a Poincaré transformation (�, a) with � ∈ L↑+.

In K̃, the situation is described in this way: the particle is prepared at τ0 in z̃0 = �z0 + a
with initial quantum state

�̃τ0(x̃) =
(
W(�,a)�τ0

)
(x̃) = S(�)�τ0(�

−1(x̃ − a))
with

∥∥�̃τ0

∥∥2
H̃ = 1 (the operator W(�,a) is unitary). The measurement i at proper time τi

happens at z̃i = �zi + a and is represented by

M̃i = W(�,a)MiW
+
(�,a) =

∑
j

λi,j |�̃i,j 〉〈�̃i,j |

with �̃i,j = W(�,a)�i,j . It is true that 1 =∑j |�̃i,j 〉〈�̃i,j | and 〈�̃i,j |�̃i,k〉H̃ = δj,k .
If we apply the algorithm in K̃ and if we choose the same random numbers, then we get

the same measurement results as those we get if we apply the algorithm in K, because

p̃(λi,j ) =
∣∣〈W(�,a)�i,j

∣∣W(�,a) �τi
〉
H̃
∣∣2 = ∣∣〈�i,j

∣∣ �τi 〉H∣∣2 = p(λi,j ).
The system state (ωτ ,�τ ) in the reference frame K and the system state (ω̃τ , �̃τ ) in the

reference frame K̃ are always connected in the following way:

(ω̃τ , �̃τ ) = (ωτ ,W(�,a)�τ ).

The above algorithm describing ideal, infinitesimal short measurements is covariant.
Now we consider the charge-conjugated system KC . We set

�C
τ0

:= Cγ 0T �∗τ0
�C
i,j := Cγ 0T �∗i,j .

The charge-conjugated observables are defined by

MC
i = Cγ 0TM∗i γ

0T C+ =
∑
j

λi,j
∣∣�C

i,j

〉 〈
�C
i,j

∣∣ .
The complex conjugated operatorM∗i is defined by M∗i � := (Mi�

∗)∗.
If we execute the algorithm in the charge-conjugated system KC or if we execute the

algorithm in the normal system K, both will result in the same events (if we choose the same
random numbers), because

pC(λi,j ) =
∣∣∣〈�C

i,j

∣∣�C
τi

〉
HC

∣∣∣2 = |〈�τi |�i,j 〉H|2 = p(λi,j ).
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The system state (ωτ ,�τ ) in K and the system state
(
ωCτ ,�

C
τ

)
inKC are always connected

by (
ωCτ ,�

C
τ

) = (ωτ ,Cγ 0T �∗τ
)
.

We demand that the algorithm applied in the ‘charge-conjugated world’ or applied in the
‘normal world’ describes the same physical situation.

We end this section with the derivation of an important relationship between the standard
reduction postulate used with the Dirac equation and the above algorithm: the standard
reduction postulate formulated in a (preferred) fixed reference frame can be rewritten as a
special case of the above algorithm. Especially, the standard reduction postulate used in a
fixed reference frame gives the same probabilities as the above (covariant) algorithm.

We choose the (preferred) fixed reference frame. We assume that the electromagnetic
potential Aµ is time-independent in this frame. Now, we define

HD = −ich̄γ 0γ k
∂

∂xk
+ eγ 0γ µAµ + γ 0mc2.

Let Ut ≡ U((ct,�0),�0,�0) (see (6)), so that (Ut�)(�u) = �(ct, �u). We are now in a position to
prove our claim.

Let the wavefunction beψ0 at time t = 0 with ‖ψ0‖L2(R
3)4 = 1. We assume measurements

happening at times t1, . . . , tn with 0 < t1 < t2 < · · · < tn. The measurement i is represented
by an observablemi with

mi =
∑
j

λi,j |φi,j 〉〈φi,j |

and 1 =∑j |φi,j 〉〈φi,j |, 〈φi,j |φi,k〉L2(R
3)4 = δj,k and λi,j ∈ R.

Next, we describe this situation in the framework of our formalism. Let

�0 := U−1
0 ψ0.

We get ‖�0‖H = 1. We define n measurements happening at proper times τi := ti at spacetime
points zi = (cti, �yi). �yi can be chosen arbitrarily. The measurements are represented by
observablesMi with

Mi := U−1
cti
miUcti =

∑
j

λi,j |�i,j 〉〈�i,j |

with �i,j = U−1
cti
φi,j . Note that 1 =∑j |�i,j 〉〈�i,j | and 〈�i,j |�i,k〉H = δj,k .

We execute the standard reduction postulate (SR) and the above algorithm (AL).

(i) SR. At time t = 0 the wavefunction is ψ0.
AL. At τ = 0 the state of the quantum part is �0 with ψ0 = U0�0.

(ii) SR. Until t = t1, the time evolution of the wavefunction is given by

ψ(t) = exp
(
− i

h̄
tHD

)
ψ0.

AL. The state of the quantum part does not change until τ = τ1 = t1:

�τ = �0.

The following relationship between ψ(t) and �0 is fulfilled for 0 � t � t1:

ψ(t) = exp
(
− i

h̄
tHD

)
U0�0 = Ut�0 = Ut�t .



A relativistic extension of event-enhanced quantum theory 9239

(iii) SR. At t = t1, the first measurement happens. The probability for the result λ1,j is given
by

p1,j = |〈φ1,j |ψ(t1)〉L2(R
3)4 |2.

AL. At τ = τ1 = t1, the first measurement happens. The probability for the result λ1,j is
given by

p1,j = |〈�1,j |�0〉H|2
= ∣∣〈U−1

t1
φ1,j

∣∣U−1
t1
ψ(t1)〉H

∣∣2
= |〈φ1,j |ψ(t1)〉L2(R

3)4 |2.
(iv) SR. The result should be λ1,j . Then, the following change of the wavefunction happens

ψ(t1) −→ φ1,j = Ut1�1,j .

AL. The result should be λ1,j . Then, the following change of the wavefunction happens

�0 −→ �1,j = U−1
t1
φ1,j .

The algorithm continues with the other measurements.
We want to underline two facts. First the probabilities resulting from the standard

reduction postulate and the probabilities resulting from the above algorithm are equal.
Additionally, it is true for all t � 0 that

ψ(t) = Ut�t .
In the same way, we can derive the relationship between our algorithm and the algorithm

for ideal, localized measurements proposed in the approach of Breuer and Petruccione [9].
Let a foliation of spacetime be a family of space-like hyperplanes σλ(τ) which represent the
equal-time hyperplanes of an observer moving along a time-like trajectory. Their algorithm
with a fixed foliation σλ(τ) can be formulated as a special case of our algorithm. On the other
hand, if a foliation σλ(τ) exists with zj ∈ σλ(τj ) ∀j then our algorithm can be formulated as
a special case of their algorithm with the foliation σλ(τ). Both algorithms will give the same
measurement results if we choose the same random numbers. However, the physical ideas are
different. In the formalism of Breuer and Petruccione the wavefunction cannot in general be
written as a function on the spacetime continuum but in our formalism the wavefunction is
always a function on the spacetime continuum.

5. Events generating algorithm (detections of the particle)

In this section, we formulate an algorithm for modelling continuous relativistic measurements,
indeed we will propose in the following an algorithm to simulate detections of the particle.
In principle, we do this by rewriting the algorithm of EEQT by replacing t with τ and using
our Hilbert space of ‘solutions’. Again, the quantum state should change only in the case of
measurement, i.e. the ‘Hamiltonian’ is zero.

We label the reference frame K. The particle is prepared at proper time τ0 in a point
x0 =

(
x0

0, �x0
)
.

We consider n detectors with trajectories zj (τ ), j = 1, . . . , n. The trajectories start at
proper time τ = τ0 from the backward light-cone of the spacetime point of the ‘preparation
event’:

‖x0 − zj (τ0)‖2 = 0 z0
j (τ0) � x0

0 .
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We allow detections which happen in the past of the preparation time. But we do not
allow detections if the detection spacetime point is located in the backward light-cone of the
spacetime point of the preparation event.

Each detector is characterized by operators Gj(τ) mapping (generalized) solutions on
(generalized) solutions. Let G+

j (τ ) be the adjoint operators. The total coupling between the
quantum and the classical systems is given by �(τ) :=∑j G

+
j (τ )Gj(τ ).

Let (ωτ ,�τ ) be the state of the total system. We define the following algorithm:

(i) The particle is prepared in a spacetime point x0 at proper time τ = τ0. The quantum state
is �τ0 with

∥∥�τ0

∥∥2
H = 1 and the classical state is ωτ0 = 0.

(ii) Choose a uniform random number r ∈ [0, 1].
(iii) Propagate the quantum state forward in proper time by solving

∂

∂τ
�τ = −1

2
�(τ)�τ (10)

until τ = τ1, where τ1 is defined by

1− ∥∥�τ1

∥∥2
H =

∫ τ1

τ0

dτ 〈�τ |��τ 〉H = r.

Let ωτ = ωτ0 until τ = τ1, a detection happens at proper time τ = τ1.
(iv) We choose the detector k, which detects the particle, with probability

pk = 1

N

∥∥Gk(τ1)�τ1

∥∥2
H

with N =∑j

∥∥Gj(τ1)�τ1

∥∥2
H.

(v) Let l be the detector which detects the particle. The detection happens at the point zl(τ1).
The detection induces the following change of the states:

(
ωτ1 ,�τ1

) −→
(
l,

Gl(τ1)�τ1∥∥Gl(τ1)�τ1

∥∥
H

)
.

The algorithm can start again perhaps with other detectors at position (ii).
We want to examine what this algorithm looks like in another reference frame. Let K̃ be

the reference frame which is connected to K by a Poincaré transformation (�, a)with� ∈ L↑+.
In K̃ , the situation can be described as follows: the particle is prepared at τ0 in

x̃0 = �x0 + a with initial quantum state

�̃τ0(x̃) =
(
W(�,a)�τ0

)
(x̃) = S(�)�τ0(�

−1(x̃ − a))
with

∥∥�̃τ0

∥∥2
H̃ = 1 (because the operator W(�,a) is unitary). The trajectories of the detectors

are z̃i = �zi + a, and the detectors are characterized by

G̃j (τ ) = W(�,a)Gj(τ )W
+
(�,a).

We get �̃(τ ) =∑j G̃
+
j (τ )G̃j (τ ) = W(�,a)�(τ)W

+
(�,a).

Note, that if �τ is a solution of (10) then �̃τ := W(�,a)�τ is a solution of

∂

∂τ
�̃τ = W(�,a)

∂

∂τ
�τ = −1

2
W(�,a)�(τ)�τ = −1

2
W(�,a)�(τ)W

+
(�,a)�̃τ = −

1

2
�̃(τ )�̃τ .

This result implies that the algorithm executed in the reference frame K̃ will give the
same detections as the algorithm executed in K (if we choose the same random numbers). The
spacetime points of the detections in the two reference frames are connected by the Poincaré
transformation (�, a).
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The system state (ωτ ,�τ ) in the reference frame K and the system state (ω̃τ , �̃τ ) in the
reference frame K̃ are always connected in the following way:

(ω̃τ , �̃τ ) = (ωτ ,W(�,a)�τ ).

The algorithm modelling detections of the particle is indeed covariant.
Now we consider the charge-conjugated system KC . Let

�C
τ0

:= Cγ 0T �∗τ0
∈ HC.

The charge-conjugated coupling is given by

GC
j (τ ) = Cγ 0T G∗j (τ )γ

0T C+ (11)

with G∗j (τ )� := (Gj(τ )�
∗)∗. Let

�C(τ) =
∑
j

GC+
j (τ )G

C
j (τ ) = Cγ 0T �∗(τ )γ 0T C+.

Note, that if �τ is a solution of (10) then �C
τ ≡ Cγ 0T �∗τ is a solution of

∂

∂τ
�C
τ = Cγ 0T ∂

∂τ
�∗τ = −

1

2
Cγ 0T �∗(τ )γ 0T C+�∗τ = −

1

2
�C(τ)�C

τ .

We also note that

GC
j (τ )�

C
τ = Cγ 0TG∗j (τ )γ

0T C+Cγ 0T �∗τ = Cγ 0T (Gj (τ )�τ)
∗ ≡ (Gj(τ )�τ )

C.

A corollary of this fact is
∥∥GC

j (τ )�
C
τ

∥∥2
HC = ‖Gj(τ)�τ‖2

H and
〈
�C
τ

∣∣�C(τ)�C
τ

〉
HC =

〈�τ |�(τ)�τ 〉H.
We can conclude: if we start with �τ0 ∈ H and operatorsGj(τ), then the algorithm will

give the same results as if we start with �C
τ0
= Cγ 0T �∗τ0

∈ HC and operators GC
j (τ ) defined

in (11) (if we choose the same random numbers).
The state (ωτ ,�τ ) in the normal system K and the state

(
ωCτ ,�

C
τ

)
in the charge-conjugated

system KC are again connected by(
ωCτ ,�

C
τ

) = (ωτ ,Cγ 0T �∗τ
)
.

Again, we demand that the algorithm applied in the ‘charge-conjugated world’ or applied
in the ‘normal world’ describes the same physical situation.

In the last part of this section, we examine the non-relativistic limit of the above algorithm
and prove heuristically that the non-relativistic limit reduces to the algorithm of the non-
relativistic EEQT. To establish this fact, we define

�(τ, �x) := (Uτ�τ )(�x) = �τ(cτ, �x)
with �τ being a solution of (10) (we recall that Ut ≡ U((ct,�0),�0,�0)) and we assume that
�τ ∈ Ĥ ∀τ . We get

ih̄
∂

∂τ
�(τ, �x) = ih̄c

(
∂

∂x0
�τ

)
(cτ, �x) + ih̄

∂�τ

∂τ
(cτ, �x)

= HD�τ(cτ, �x)− i
h̄

2
(Uτ�(τ)�τ)(�x)

= HD�(τ, �x)− i
h̄

2


∑

j

[
UτG

+
j (τ )U

−1
τ

]︸ ︷︷ ︸
=:g+

j (τ )

[
UτGj(τ )U

−1
τ

]︸ ︷︷ ︸
=:gj (τ)


�(τ, �x). (12)
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We examine the non-relativistic limit of (12) using the assumption (in analogy with
calculations of the non-relativistic limit of the Dirac equation, see e.g., [16])

�(τ, �x) = exp

(
−i
mc2

h̄
τ

)(
φ

χ

)
. (13)

Furthermore, we assume that

gj (τ ) =
(
gj,1(τ ) 0

0 gj,2(τ )

)
.

Inserting (13) in (12), we take the limit c→∞ but we keep e
c
Ak . In this way, we obtain the

modified equation of the non-relativistic EEQT (see, for example, [3])

ih̄
∂

∂τ
φ =


 1

2m

∑
l

(
h̄

i

∂

∂xl
− e
c
Al
)2

− eh̄

2mc
�̂σ �B + eA0 − i

h̄

2

∑
j

g+
j,1(τ )gj,1(τ )


φ

with σ̂ k being the Pauli matrices. We note that

〈�τ |�τ 〉H =
∫

d�x �+(τ, �x)�(τ, �x) c→∞−→
∫

d�x φ+(τ, �x)φ(τ, �x).
If we set t := τ , we see immediately that the algorithm of the EEQT is the non-relativistic
limit of the above relativistic algorithm.

Breuer and Petruccione also proposed an algorithm for continuous measurements in their
approach [10]. Under some conditions (because, e.g., space-like separated operators must
commute in their formalism but we do not require this explicitly), their algorithm with a fixed
foliation can again be formulated as a special case of our algorithm and vice versa. But again
the physical ideas are different.

6. Summary

In this paper, we have presented an alternative version of a relativistic extension of the event-
enhanced quantum theory (EEQT). It describes one massive spin- 1

2 particle.
We use the idea of an additional time, the proper time, which is invariant in all reference

frames (in analogy with the relativistic extension of Blanchard and Jadczyk [14]).
The total system consists of a quantum part and a classical part analogous to EEQT. A

pure state ωτ of the classical part at a proper time τ is a number (ωτ ∈ N0). A pure state �τ
of the quantum part at a proper time τ is (heuristically) a solution of the Dirac equation. We
have proved that the solutions of the Dirac equation can be extended to a separable Hilbert
space with a positive-definite scalar product. The pure quantum states are the elements of
this Hilbert space and still functions on the spacetime continuum. An important property of a
quantum state �τ is that it is uniquely given by its projection onto a space-like hyperplane.

The advantage of a positive-definite scalar product must be paid for with a more
complicated Hilbert space compared to the relativistic extension of Blanchard and Jadczyk
[14]. In that extension, the Hilbert space is simpler but they use an indefinite scalar product.

The transformation rules of a system state (if we change the reference frame) have been
presented. They are chosen in such a way that the scalar product between two quantum states
is independent of the reference frame.

First, we have postulated a covariant algorithm to simulate ideal, infinitesimal short
measurements. We have shown that the (non-covariant) standard reduction postulate
formulated in a (preferred) fixed reference frame can be rewritten as a special case of our
(covariant) algorithm.
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Second, we have postulated a covariant algorithm to simulate detections of a particle. We
have shown that the non-relativistic limit of this algorithm reduces to the PDP algorithm of
the non-relativistic EEQT.

Moreover, we have shown that both algorithms are invariant by charge conjugation.
Both algorithms are also correlated with those proposed by Breuer and Petruccione

[7–11]. The algorithms can be written (under some conditions) as special cases of those
proposed by Breuer and Petruccione and vice versa. But the physical ideas behind them
are different. While in our formalism the wavefunction is always a function on the spacetime
continuum, this is in general not true in the approach of Breuer and Petruccione.

We want to end this paper with a summary of the properties of an event in our theory: an
event is a change of the (pure) state of the classical part which happened at a proper time. An
event can be observed without disturbing it. We demand that each event be associated with a
point in spacetime. In general, if an event happens, the quantum state changes simultaneously
and instantaneously over the whole spacetime. We do not want to include the principle of
relativistic causality explicitly in our formalism: we even allow that an event can happen in
the past of the previous (concerning proper time) event. But we want to preserve a weak kind
of order, so we demand the following: no event (e.g., preparation, measurement or detection)
can be created at a spacetime point which lies in the backward light-cone of that spacetime
point which is associated with the previously (concerning proper time) created event. All
these demands are fulfilled by the events generated by our algorithms.
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